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A B S T R A C T   

Given that real-world infection-spread scenarios pose many uncertainties, and predictions and simulations may 
differ from reality, this study explores factors essential for more realistically describing an infection situation. It 
furnishes three approaches to the argument that human mobility can create an acceleration of the spread of 
COVID-19 infection and its cyclicality under the simultaneous relationship. First, the study presents a dynamic 
model comprising the infection–mobility trade-off and mobility demand, where an increase in human mobility 
can cause infection explosion and where, conversely, an increase in new infections can be made temporary by 
suppressing mobility. Second, using time-series data for Japan, it presents empirical evidence for a stochastic 
trend and cycle in new infection cases. Third, it employs macroeconometrics to ascertain the feasibility of our 
model’s predictions. Accordingly, from March 2020 to May 2021, the sources of COVID-19 infection spread in 
Japan varied significantly over time, and each change in the trend and cycle of new infection cases explained 
approximately half the respective variation.   

1. Introduction 

Many epidemiologists have sounded alerts regarding the COVID-19 
infection spread, ever since the initial outbreak in early 2020. They 
have conducted detailed analyses of the pandemic situation from the 
primary stages. For instance, the results of the Susceptible-Infected- 
Recovered (SIR) model, a benchmark for modeling epidemics in the 
field, hinted at the likelihood of a pandemic. Moreover, in February and 
early March 2020, the models predicted exponential growth, massive 

infections, hospitalizations, and deaths.1 The models further suggested 
that either eliminating physical contact between people, to reduce the 
probability of being infected, or inducing herd immunity, where infec
ted persons come into contact with sufficient people who have recovered 
from or have become immune to the infection, can slow the infection 
spread at a fixed reproduction rate. Thus, relevant bodies opted for the 
former approach, by imposing restrictions on mobility and in-person 
economic activities to alleviate a possible COVID-19-related tragedy.2 

Unsurprisingly, predictions regarding COVID-19 infection spread 
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1 In Japan, on February 24, 2020, members of the Expert Committee on Countermeasures to Combat Infectious Diseases of Novel Coronaviruses posited that the 

infection in Japan could spread rapidly. https://www.mhlw.go.jp/stf/seisakunitsuite/newpage_00006.html (Accessed June 12, 2021)  
2 As per the Expert Committee on Countermeasures against Novel Coronavirus Infections report on February 24, 2020, the committee sought a policy that reduces 
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garnered much attention because anxieties and fears were strong amid 
extensive reporting of the outbreak by the media in early 2020. Epide
miological experts, researchers, and commentators have since dissemi
nated knowledge and opinions in various media, closely following the 
evolution of the spread into the current long-running pandemic.3 

However, epidemiological model predictions and simulations are not 
necessarily consistent with reality. For example, in Japan, the number of 
new infection cases did not increase as expected during the first wave of 
the pandemic. Even though infection cases may have decreased because 
of the mobility restrictions and the subsequent declaration of the first 
state of emergency by the government, the number of new infection 
cases did not decrease easily during the third and fourth waves, despite 
the further restrictions of the second and third state of emergency dec
larations. To be sure, real-world scenarios pose many uncertainties, and 
predictions and simulations may differ from reality if assumptions 
change. However, to inform relevant policies and contribute to the 
literature, it is worthwhile to explore factors essential for a more realistic 
description of the evolution of an infection situation. 

Arguably, COVID-19 infection cases are closely linked to human 
mobility. Accordingly, the rise in new infection cases is positively asso
ciated with human mobility because the probability of being infected via 
interaction with other infected people increases as mobility increases. 
However, people curb their mobility in response to the infection situa
tion. Thus, whenever the number of new infection cases increases, 
people will restrict their mobility. Therefore, a simultaneous relation
ship between human mobility and new infection cases likely underlies 
the dynamics of an infection spread. 

Hence, this study explores the dynamics of the COVID-19 infection 
and human mobility, to explain the reality of the COVID-19 spread via 
the underlying simultaneous relationship. In particular, the supply side 
of the COVID-19 infection spread and demand side of human mobility, 
are likely to determine the number of new infection cases endogenously. 
Thus, human mobility can create a dire situation. That is, given a rising 
number of new infection cases, unregulated economic activities can 
induce an explosive increase in such cases. However, systemic mecha
nisms can converge the increase or decrease in the number of new 
infection cases. When people respond to the current infection situation 
and refrain from activities, the effective reproduction rate changes sys
tematically according to their behavior and stabilizes, relative to the 
standard SIR model prediction. 

Under the presence of the simultaneous relationship, an unexpected 
observed increase in new infection cases can produce different pre
dictions for infection spread, depending on the underlying factors. As 
the infectivity of the virus changes over time with the emergence of 
variant strains, the infection risk changes as well; hence, the number of 
new infections can suddenly increase. If people are sufficiently aware of 
and sensitive to changes in infection risk and change their behavior to 
avoid infection, the infection spread can be expected to be transient. In 
contrast, if people’s patience with the infection situation is limited and 
their behavioral preferences change so that they are less sensitive to 
changes in infection risk, the infection spread is expected to be pro
longed. Therefore, the key challenge in predicting infection spread is to 
monitor not only changes in the infection risk itself, but also the changes 
in people’s perception of the risk. 

The 2020–2021 outbreak situation in Japan is a valuable example to 
explore the role of human mobility in COVID-19 infection cases 
empirically. Unlike China, the US, and European countries that imposed 
mandatory lockdowns, the Japanese government has not legally 
restricted social activities owing to the spread of COVID-19, but has 
simply asked people to refrain from going out and closed restaurants 

during the declared emergency.4 Nevertheless, COVID-19-infection 
status in Japan has been and remains lower than in most other coun
tries. As of May 21, 2021, the total number of confirmed cases in Japan 
was approximately 700,000, less than 1% of the total population. 
However, the spread of the infection has profoundly impacted the 
economy; Japan’s real GDP in 2020 was down by 4.8% from the pre
vious year, the second-largest drop on record, after the recession in 2009 
due to the global financial crisis. This situation suggests that despite the 
absence of legal or behavioral restrictions, people in Japan tend to 
voluntarily restrict their behavior in response to infection spread, at the 
expense of economic gain. 

This study contributes to the literature in three ways. First, it con
ducts a model analysis of the dynamics of new infection cases. In 
particular, it emphasizes the role of mobility demand. Changes in human 
behavior preferences, such as familiarity with and ignorance of the 
pandemic, can accelerate infection spread. However, a systematic 
response of mobility demand to sudden changes in new infection cases 
can induce cyclicality of such cases. Second, the study presents empirical 
evidence of a stochastic trend and cycle in new infection cases. Third, 
this study employs macroeconometrics to present findings supporting 
the argument in the model analysis. Further, sources of the COVID-19 
infection spread vary significantly over time, and the changes in the 
trend and cycle of new infection cases explain approximately half the 
respective variation, from February 2020 to May 2021 in Japan. 

The rest of this paper is organized as follows. Section 2 reviews the 
literature relevant to this study. Section 3 presents a model analysis of 
new COVID-19 infection dynamics. Section 4 introduces the time-series 
data and shows the time-series features on the number of new COVID-19 
infection cases. Section 5 presents empirical results via macro
econometric analysis. Section 6 discusses the findings and concludes the 
study. The Appendix provides data sources and weekly data construc
tion. The Online Appendix provides additional analyses, and reports the 
robustness check and sensitivity analysis of the empirical results in the 
benchmark model. 

2. Related work 

Model prediction for equilibrium reproduction number equal to one 

Several studies (e.g., Gans, 2020) present theoretical models that can 
generate the tendency toward an equilibrium point, where the repro
duction number is equal to one. Such works are inspired by the regu
larity in the reproduction number pattern, showing a sudden rise and 
subsequent fall to approximately one or just below one (not zero), that 
has been documented across all states in the US and many countries 
worldwide, documented by Atkeson et al. (2020). The key mechanism 
underlying the equilibrium reproduction number equal to one in the 
model, is that individuals can base their behavior on prevalence rather 
than the falling set of those who are susceptible, to slow an infection 
using the standard SIR model with a fixed reproduction rate. In this 
paper, we present a dynamic model by retaining its implication. We 
abbreviate the SIR part of the model for simplicity and specify the supply 

3 News items on COVID-19 on Nippon Hoso Kyokai (Japan Broadcasting 
Corporation), Japan’s only public broadcaster, were 289 in January 2020, 
increased to 1,638 in February, and reached more than 4,000 in April. Monthly 
news stories have since been always approximately 2,000, as of June 2021. 

4 The stringency index, calculated by the Oxford Coronavirus Government 
Response Tracker project, is a measure of the strictness of government policies 
and provides evidence that policy impact in Japan is extremely low. On 
average, Japan’s stringency index during the sampling period was 39.9, the 
seventeenth lowest among the 181 countries for which data can be obtained. 
Moreover, it is the second lowest among Organisation for Economic Co- 
operation and Development member countries after New Zealand (36.9) and 
the second lowest among countries with a population of 50 million or more 
after Tanzania (21.8). The global average of the stringency index is 59.1, and 
the population-weighted global average is 66.1. The index in major countries 
such as Brazil (68.6), Canada (68.6), China (71.9), France (65.0), Germany 
(66.4), India (74.6), Italy (71.8), Russia (53.9), the UK (70.2), and the US (66.1) 
is generally high. 
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side of new infection cases, to capture a trade-off between the new cases 
as something undesirable and human mobility. Further, we emphasize 
the role of mobility demand to generate the stochastic trend and cycle in 
the new infection cases. 

Time-series analysis for the COVID-19 infections 

Time-series modeling considers the model that captures the non- 
stationary nature of the infection spread in the dynamics of new infec
tion cases. Jiang et al. (forthcoming) develop the self-normalization 
technique to capture the phase transitions of an epidemic growth rate 
via multiple change-points and apply it to the log of the cumulative 
COVID-19 confirmed cases and deaths. They argue that the forecasts 
using time-series modeling can be a meaningful addition to the other 
forecasting models, including complex mechanistic models for tracking 
the COVID-19 pandemic. While their model characterizes the 
non-stationary nature of the infection spread as the piecewise linear 
trend, we consider time-series modeling that does the same as a sto
chastic trend. Specifically, we provide empirical evidence of a stochastic 
trend and cycle in the log of the new infection cases and apply the vector 
autoregressive (VAR) model comprising the log changes in such cases 
and the measure of human mobility to investigate the role of the trend 
and cycle.5 

Forecasting and simulating COVID-19 infections using complex 
mechanistic models 

Many studies have generated COVID-19 infection forecasts and 
simulations. In particular, epidemiological models, such as the SIR 
model, are commonly used for estimations and predictions to quantify 
knowledge (or the absence of it) on the current infection status, and 
generate simulations to explore suggestions for policymakers (Kissler 
et al., 2020; Atkeson, 2020). Arik et al. (2020) propose complex mech
anistic models modifying epidemiological models, such as the 
Susceptible-Exposed-Infectious-Removed model, by means of 
information-bearing covariates using machine learning and artificial 
intelligence. This study does not aim to explore or provide a better 
forecasting model than other proposed forecasting methods. Rather, it 
focuses on investigating the role of human mobility in COVID-19 dy
namics, using a model that can capture the dynamics of the number of 
new infection cases and human mobility. 

Epidemiological models with human behavior 

Following the seminal work by Eichenbaum et al. (2021), many 
studies are increasingly incorporating epidemiological SIR models into 
economic analysis; these are often referred to as the SIR–Macro models. 
Regarding Japan, Kubota (2021) and Hosono (2021) present the models 
with different ingredients per their interests. They mainly focus on the 
effect of the spread of COVID-19 infection on economic activities, using 
the dynamic stochastic general equilibrium models. In contrast, this 
study primarily examines the role of human mobility in the dynamics of 
the new infection cases using macroeconometric models. 

Empirical evidence on the association between the COVID-19 infection and 
human mobility 

Many empirical studies have demonstrated a significant relationship 

between COVID-19 infection status and human mobility using various 
data sources. They conduct an empirical analysis for each of the two 
causal relationships between human mobility and the number of new 
infection cases. Some studies report empirical evidence supporting a 
trade-off between human mobility and COVID-19 infection. For 
example, Kraemer et al. (2020) use rich data on COVID-19 infection 
cases (including the dates when people first reported symptoms) and 
real-time travel data in China, and find that mobility measures offer a 
precise prediction of COVID-19 spread in Chinese cities at the start of 
2020. In Japan, Nagata et al. (2021) estimate the impact of mobility 
changes on the new confirmed cases using mobile device data and argue 
that mobility changes, especially in areas active at night, were positively 
and significantly associated with COVID-19 spread. Moreover, Fujii and 
Nakata (2021) and Fukao and Shioji (2022) use daily data on the Google 
mobility index and the number of new infection cases to analyze the 
determinants of reproduction rate and mobility.6 Others report the 
response of human mobility to new infection cases. For example, 
Goolsbee and Syverson (2021) use mobile phone data in the US between 
March and May 2020, to compare the reductions in visits to businesses 
between counties that were in government-mandated lockdown states 
with those in non-lockdown states. They find that the reductions in visits 
primarily stemmed from peoples’ choices; those attributable to a 
government-mandated lockdown were few. Further, Watanabe and 
Yabu (2021) use a daily prefecture-level mobile device data to examine 
the degree of voluntary response to infection cases in Japan and find 
results quantitatively and qualitatively similar to Goolsbee and Syver
son (2021).7 This study conducts empirical analyses using the macro
econometric model comprising a system of simultaneous equations that 
considers the two causal relationships between human mobility and the 
number of new infection cases.8 

3. Rationale for the existence of both a stochastic trend and 
cycle in the dynamics of the COVID-19 infection 

This section explains the logic behind our argument that while an 
increase in human mobility can cause infection explosion, such an in
crease in new infections can be made temporary by suppressing 
mobility.9 Specifically, we present the analysis using a straightforward 
model for the dynamics of new COVID-19 infection cases, comprising a 
system of simultaneous equations that considers the two causal re
lationships (i.e., the infection–mobility trade-off and mobility demand). 
Our model can produce a stochastic trend and cycle of new infection 
cases under certain conditions. 

3.1. The dynamic model of the COVID-19 infection and human mobility 

We consider a model that can describe COVID-19 infection dynamics 
and human mobility. The variable πt represents the new infection cases 

5 The VAR model yields consistent estimates even if each variable in the 
model is non-stationary. See Hamilton (1994) pp.651-653. 

6 Fujii and Nakata (2021) connect SIR dynamics with economic activity, 
though they do not incorporate optimization of economic agents in their 
analysis, unlike the studies by (for example) Eichenbaum et al. (2021).  

7 Watanabe and Yabu (2021) refer to the voluntary lockdown as refraining 
from going out by choice, which is different from the mandatory lockdowns by 
governments in China, the US, and European countries.  

8 Although this study has different objectives relative to prior studies, the 
closest study to this work is the one by Fukao and Shioji (2022) in that they 
regress each of the system comprising the infection–mobility trade-off (i.e., the 
pandemic Phillips curve) and mobility demand (i.e., the pandemic IS curve and 
pandemic Taylor rule).  

9 The purpose of this section is not to propose a model which is suitable for 
real-world applications, such as predicting or simulating the infection spread. 
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at time t, defined as the log of new confirmed COVID-19 infection cases. 
The variable yt represents the mobility level chosen by people at time t, 
defined as the log deviation from the steady state.10 

First, we model the causal relationship representing an infec
tion–mobility trade-off. Specifically, we consider the new infection 
production function as follows: 

πt+1 = πt + κyt− 1 + ϵπ,t+1, (1)  

where κ > 0 is the parameter, and ϵπ,t is the stochastic term of the new 
infection production function. Eq.  (1) can easily express an infec
tion–mobility trade-off, where new infection cases, as something unde
sirable, are positively associated with human activities. Further, in the 
formulation of Eq.  (1), a new infection case at time t + 1, πt+1, is 
regarded as a function of human mobility two terms prior, yt− 1. This 
development reflects “epidemiological rigidity,” which is the time lag 
between physical contact with infected people and COVID-19 infection 
(including worsening symptoms after an incubation period, diagnosis, 
testing, and reporting). We assume the time lag to be two weeks in the 
modeling.11 

Now consider that there are two types of shocks related to new 
infection case at time t, denoting ϵp,t and ϵc,t respectively. We then 
decompose the stochastic term of the new infection production function 
as ϵπ,t = ϵp,t + ϵc,t . Regarding each shock process, we assume that 

ϵi,t = ρiϵi,t− 1 + ξi,t, ρi ∈ [0, 1], i ∈ {p, c}, (2)  

where each ξi,t is independently and identically distributed with mean- 
zero, and is independent of each other. We will consider that people’s 
responses to new infection cases vary across shocks, as shown below. 

Next, we model the systematic response of human mobility demand, 
as people decide their mobility level by observing the latest number of 
new infection cases. Given the premise of the availability of information 
on the new infection cases at time t, we specify the mobility demand 
function as follows: 

yt = b
(
πt − π∗

t

)
, (3)  

where b < 0 denotes the parameter representing the sensitivity of 
mobility demand to the infection situation. Eq. (3) expresses the demand 
of people’s mobility where people negatively change their mobility 
demand in response to the outbreak situation. In particular, mobility 
demand systematically responds to the deviation in new infection cases 
from its reference level. π∗

t is the reference level of crowds. From (3), the 
reference level works as a threshold of the activity level to react; if the 
number of new infection cases increases (decreases) above (below) the 
reference level, people refrain from their activities (become active). 

We relate the degree of people’s patience about the COVID-19 situ
ation to the dynamics of the reference level. In practice, as the con
strained lifestyle owing to the COVID-19 pandemic is prolonged, 
infection anxiety weakens: this phenomenon is often called Corona 
habituation. As reports of high numbers of new infection cases lead 

people to assume an air of permanence, people begin to entertain the 
thought that they “deserve it,” even as the infection situation worsens.12 

Thus, to incorporate the degree of people’s patience toward the infection 
situation into the model, we parameterize the reference level in Eq. (3) 
of the mobility demand as follows: 

π∗
t = dπt, (4)  

where d > 0 denotes the parameter representing the degree of people’s 
patience and πt is the potential and trend level of the number of new 
infection cases, which are time-varying given ϵp,t, following πt = πt− 1 +

ϵp,t . In d = 1, the reference level of new infection cases is neutral to their 
potential and trend level. In d > 1, people are not patient toward 
infection cases. As the long-term level of new infection cases increases, 
the reference level rises above the potential level, as described by 
Corona habituation. In d < 1, people are conservative about infection 
cases. Even if the long-term level of new infection cases rises even 
higher, people do not change their reference level drastically. 

In our model setting, the change in new infection cases given ϵp,t is 
associated with a shock in mobility demand. We incorporate the degree 
of people’s patience about the infection situation into the mobility de
mand in the model 

yt = bπt − bdπt− 1 − bdϵp,t, (5)  

by substituting Eq. (4) into Eq. (3). Regarding d > 1, the increase in new 
infection cases given ϵp,t results in an increase in mobility demand, 
separate from its systematic response. Despite the increasing number of 
new infection cases, people aggressively continue their economic ac
tivities. However, regarding 0 < d < 1, the increase in new infection 
cases given ϵp,t results in a decrease in mobility demand. Although they 
increase their reference level, people partially refrain from activities as 
per the infection situation. Moreover, regarding d = 1, people’s 
behavior remains unchanged despite the rise in new infection cases 
given ϵp,t , since their reference level also rises by the same amount. 

Here, we analytically investigate the dynamic properties of the sys
tem. Replacing yt− 1 in Eq. (1) by Eq. (3) generates 

Δπt+1 = κb
(
πt− 1 − π∗

t− 1

)
+

∑

i∈{p,c}

ϵi,t+1. (6)  

Eq. (6) means that when the number of new infection cases two weeks 
ago is above (below) the reference value, the current number of new 
infection cases is decreasing (increasing). 

The model suggests that the change in new infection cases due to the 
infection shock ϵc is temporary. Replacing π∗

t− 1 in (6) by π∗
t− 1 = dπt− 1 =

d
∑t− 1

τ=1ϵp,τ under the assumption of the initial value of π0 = 0 generates 

Δπt+1 = κbπt− 1 − κbd
∑t− 1

τ=1
ϵp,τ +

∑

i∈{p,c}

ϵi,t+1. (7)  

This relationship can also be described as a downward-sloping line given 
that Δπt+1 is a function of πt− 1, as in the left panel of Fig. 1. The steady 
state of the new infection cases is where Δπt+1 = 0, which occurs at πs =

d
∑t− 1

τ=1ϵp,τ.13Since ϵc does not affect the steady state, the change in 10 In the model economy, we assume weekly frequency for the duration of 
time t.  
11 Lauer et al. (2020) report that the median incubation period is 5.1 days and 

that 97.5% of people develop symptoms within 11.5 days. Thus, it takes 
approximately a week from the time of infection to the time one develops 
symptoms; further, it takes a certain number of days after the actual symptoms 
appear for those infected to go to the hospital and undergo tests, after which the 
test results are reported. In practice, as per the announcement by the Japanese 
government of the basic policy on countermeasures against COVID-19 in
fections, the average time between the date of the onset to the date of the 
patients’ diagnosis (reported until the early stage of the COVID-19 pandemic at 
the end of March 2020) was 9.0 days, though this seemed rather short at the 
time of preparing this paper. https://www.kantei.go.jp/jp/singi/novel_cor 
onavirus/th_siryou/kihon_h_0525.pdf (Accessed June 14, 2021) 

12 Kuga (2021) reports the results of an empirical analysis of the status of 
Corona habituation in Japan. Specifically, the researcher quantitatively ana
lyzes the state of people’s COVID-19 anxiety using the “Survey on Changes in 
Daily Life Due to the New Coronavirus” 
( ), conducted by the 
Nissay Research Institute every three months since June 2020 on approximately 
2,000 men and women aged 20 to 69 nationwide. The author notes that, 
relative to September 2020, when the second wave had passed, infection fears 
had weakened in late March 2021, despite a significant increase in the size of 
the infected population.  
13 We can derive the steady state of human mobility ys = 0. 
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infection cases given ϵc can be shown as movements along the horizontal 
axis: leftwards when π > πs and rightwards when π < πs. Hence, the 
fluctuation due to infection shocks ϵc creates cyclicality in new infection 
cases in the model economy. 

However, this study’s model suggests that the infection shock ϵp can 
permanently impact new infection cases. The right panel of Fig. 1 il
lustrates this impact diagrammatically. The change in infection cases 
given ϵp generates a rightward shift in the line, representing a change in 
the stochastic trend of the new infection cases. π stabilizes at the new 
steady state πs′ in the diagram. Thus, the fluctuation given ϵp is the 
source of the non-stationary nature of new infection cases in the model 
economy. 

The model can also be used to understand how the explosive spread 
of new infection cases occurs. For simplicity, we assume that new 
infection cases are in a steady state at time t = 0, without losing gen
erality. Consider that an infection shock ξp hits the system at time 1. 
From Eq. (7) with Eq. (2); we can then easily compute Δπ1 = ξp,1 and 
Δπ2 = ρpξp,1 < Δπ1. Meanwhile, the rise in new cases at time 3 is given 
by Δπ3 = {ρ2

p + κb(1 − d)}ξp,1. The rise in new infection cases can then 
re-accelerate (i.e., Δπ3 > Δπ2) if the parameter values in the system are 
satisfied with the following condition; 

− b(d − 1) >
ρp
(
1 − ρp

)

κ
. (8)  

Intuitively, Eq. (8) means that the new infection cases could form a 
hump-shaped curve with some delay if people’s reaction to such cases is 
too sensitive (|b| is sufficiently large) or people have a fairly impatient 
preference for new infection cases (d > 1 is large enough). 

3.2. Numerical example 

We illustrate the dynamic relationship between the new infection 
cases and human mobility using the dynamic model with given 
parameter sets. The system in our dynamic model can be summarized by 
the VAR form with vector St = (πt , πt , yt− 1, ϵp,t, ϵc,t)’, as follows: 

St+1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 κ ρp ρc
0 1 0 ρp 0
b − bd 0 0 0
0 0 0 ρp 0
0 0 0 0 ρc

⎞

⎟
⎟
⎟
⎟
⎠

St +

⎛

⎜
⎜
⎜
⎜
⎝

1 1
1 0
0 0
1 0
0 1

⎞

⎟
⎟
⎟
⎟
⎠

(
ξp,t+1
ξc,t+1

)

. (9)  

We can then calculate impulse responses of the variables in the system 
under a given set of parameters to examine the dynamic causal effect of 
the infection shocks, ξp,t and ξc,t . 

Table 1 presents the selected parameters. As a benchmark, we set the 
parameter value of κ = 4, selected as per the empirical findings of 
Nagata et al. (2021). Moreover, we also set the parameter value of b = −

0.05, selected based on the empirical findings of Watanabe and Yabu 
(2021). We set the value of d to be equal to 5 as a calibration benchmark 
by assuming a Corona habituation where people are impatient about the 
outbreak situation. We set the values of the autoregressive parameters, 
ρp and ρc, to be equal to 0.3, reflecting the persistence of infection 
shocks. 

The upper and lower four panels of Fig. 2 show the calibrated dy
namic effects of the two infection shocks, ξp, and ξc, respectively, on the 
variables in the model economy. The solid line with circles in each panel 
represents the calibrated impulse responses of up to 20 times to one unit 
of each infection shock at time 0. 

The dynamic model with given parameter sets predicts that the 
infection shock ξp can induce the explosion of new infection cases, 
accompanied by increases in human mobility. From the upper-left panel 
of Fig. 2, new infection cases π increase exponentially, as suggested by 

Fig. 1. Dynamics of the new COVID-19 infection cases in the model, the effect of ϵc and ϵp. Notes: This figure shows a phase diagram describing the dynamics of new 
COVID-19 infection cases in our model. The left panel displays the effect of an increase in new infection cases due to the shock ϵc. The right panel displays the effect of 
an increase in new infection cases due to the shock ϵp. 

Table 1 
Parameters for the numerical example  

κ  b  d  ρp  ρc  

4 − 0.05  5 0.3 0.3 

Notes: The entries show the values of the parameters in the dynamic model, 
summarized by the vector autoregressive form (9) in calculating the calibrated 
impulse responses of the variables in the model to infection shocks, ξp,ξc. 
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the SIR model. Further, the log change in the number of new infection 
cases Δπ shows a hump-shaped response with a second peak after some 
time, while leading to a sustained increase in human mobility y. Hence, 
in our model economy, the variation induced by the infection shock ξp 

results in an explosion of new infection cases that produces a stochastic 
trend, accompanied by a positive correlation between the new infection 
cases and human mobility. 

In our model, an increase in human mobility, as per people’s 
response to an outbreak situation, induces an infection explosion. Fig. 3 

shows the comparison of the dynamic responses to the shock ξp with 
different values of parameter d representing the degree of people’s 
patience about the infection situation. The dashed (dotted) line in each 
panel represents the responses with d as equal to one (d equal to 0.5). 
From the figure, the absence of mobility responses regarding d = 1 re
sults in a limited rise in new infection cases relative to the benchmark, 
because the increase in reference levels π∗ is comparable to the increase 
in the number of new infection cases π, π due to an infection shock ξp. 
Further, people’s behavior remains unchanged. Additionally, regarding 

Fig. 2. Calibrated responses of variables in the model economy to the infection shocks, ξp and ξc. Notes: The solid line with circles in each of the upper and lower four 
panels represents the calibrated impulse responses to one unit of infection shocks, ξp and ξc, respectively. π: the log of new infection cases, π: the potential and trend 
level of new infection cases, Δπ: the log change in new infection cases, y: the mobility level, ξp, ξc: the infection shocks described in the text. 
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d = 0.5, as human mobility decreases, π converges to a level lower than 
1, which is the impact immediately after the shock. Therefore, the model 
predicts that new infection cases can exponentially increase with a 
stochastic trend, due to increased human mobility associated with 
patience about the infection situation. 

However, the increases in new infection cases induced by the shock 
ξc are temporary. From the lower four panels of Fig. 2, the new infection 
cases π eventually converge to zero after its transitory rise, while leading 
to a persistent decrease in human mobility y. Therefore, the fluctuation 
due to infection shocks ξc creates cyclicality in the new infection cases in 
the model economy. 

The key mechanism underlying the cyclicality in new infection cases 
in our model is the mobility demand based on which people react to the 
increase in new cases by suppressing mobility. Fig. 4 shows the com
parison of the dynamic responses to the shock ξc with different values of 
parameter b representing the systematic response of a mobility demand 
to the new infection cases. The red-dashed line in each panel represents 
the responses with b equal to zero. From the figure, the absence of 
mobility responses regarding b = 0 does not result in a steady decline in 
Δπ for the convergence of π to zero. Thus, a systematic response of 
mobility demand to changes in new infection cases is critical in the 
cyclicality of such cases in our model economy. 

From our model, we can propose the following hypotheses to be 
examined empirically. The first is that there are, in reality, both a sto
chastic trend and cycle in new infection cases. The second is that there is 
a mixture of infection shocks that cause an infection explosion with 
increased mobility, and infection shocks that cause a temporary increase 
in new infection cases with decreased mobility. The third is that we can 
explain these differences in the impact of infection shocks in relation to 
the role of mobility demand; systematic changes of mobility demand in 

response to the infection spread, result in only a temporary increase in 
new infection cases, while exogenous changes in mobility demand have 
a persistent impact on new infection cases. 

4. Evidence on the stochastic trend and cycle in new positive 
cases of the COVID-19 infection 

This section presents evidence on the stochastic trend and cycle in 
new infection cases. We document the statistical time-series features of 
new positive COVID-19 infection cases in Japan. We especially focus on 
non-stationarity and cyclicality in infection spread. 

We note the time-series data on COVID-19 spread in Japan during 
the sample period. Based on data availability, the sampling period is set 
from the week of February 16, 2020, to the week of May 9, 2021. The 
frequency of all data is weekly, and the sampling period spans up to 65 
weeks. We constructed the weekly time series of confirmed new infec
tion cases as the total cases over the week from Sunday to Saturday.14 

First, we statistically examine the time-series characteristics of new 
infection cases. Table 2 shows the mean and standard deviation of the 
log changes in such cases. It reports the sum of the univariate autore
gressive (AR) model coefficients with three-week lags for the log 
changes in new infection cases, as a measure of their persistence. Table 3 

Fig. 3. Calibrated responses of variables in the model economy to the infection shock ξp with different sensitivities of reference levels. Notes: The solid line with 
circles, dashed line, and dotted line in each panel represent the calibrated impulse responses to one unit of infection shock ξp with different parameter values d, 5, 1 
and 0.5, respectively. π: the log of new infection cases, π: the potential and trend level of new infection cases, Δπ: the log change in new infection cases, y: the 
mobility level, ξp: the infection shocks described in the text. 

14 The analysis focuses on the weekly time-series variation, as it does not 
include differences by day of the week, as in a daily series of the number of new 
infection cases. 
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shows the standardized long-run variance of the log changes as a measure 
of persistent fluctuations in the log level of new infection cases and its 
standard error, as proposed by Cochrane (1988).15 

The summary statistics document the non-stationary nature of the 
log scale of the number of new infection cases. From Table 2, a historical 
average weekly rate of new infection cases is about 10%, but its devia
tion from the average is quite large over the sample period. More 
importantly, Table 2 shows that the persistence of log changes in new 

cases is 0.585; thus, the sudden increase in the new infection cases tends 
to persistently raise the reproduction rate. Hence, the number of infec
tion cases in Japan can increase exponentially, as suggested by the SIR 
model. 

However, the persistence measure for the log level of new cases 
suggests cyclicality as well as non-stationarity in new infection cases. 
Table 3 shows the standardized long-run variances of log change in new 
cases from lag 1 to lag 20; the values in parentheses are asymptotic 
standard errors. The standardized long-run variance is above one for a 
shorter horizon; for example, standardized long-run variance with lag 
k = 1 is above one and is statistically significant. Nonetheless, it is 
significantly below one for far longer horizons, such as lag k = 20. Thus, 
the fluctuation in the log level of new cases should have a cyclical 

Fig. 4. Calibrated responses of variables in the model economy to the infection shock ξc with or without systematic responses of mobility demand. Notes: The solid 
line with circles and dashed line in each panel represent the calibrated impulse responses to one unit of infection shock ξc with the different parameter values b, −
0.05, and 0, respectively. π: the log of new infection cases, π: the potential and trend level of new infection cases, Δπ: the log change in new infection cases, y: the 
mobility level, ξc: the infection shocks described in the text. 

Table 2 
Summary statistics for log change in new cases   

mean std. dev. persistence 

Log change in new cases 0.098 0.364 0.585 

Notes: This table shows the mean, standard deviation, and persistence measure 
of log change in new cases from the week of February 16, 2020, to the week of 
May 9, 2021. It reports the sum of the coefficients of the univariate autore
gressive model with three-week lags for the log changes in the new infection 
cases as the persistence measure. 

Table 3 
Standardized long-run variance of log change in new cases   

Lag (k)   

1 4 8 12 16 20 

Standardized 
long-run 
variance 

1.622 2.667 1.978 0.820 0.344 0.412  

(0.331) (0.861) (0.857) (0.427) (0.205) (0.273) 

Notes: This table shows the standardized long-run variance of log change in new 
cases from the week of February 16, 2020, to the week of May 9, 2021. The 
standardized long-run variance with k lag(s) is calculated as 1/(k + 1) times the 
variance of k+ 1-differences of the log of the new infection cases, divided by the 
variance of its first difference. The numbers in parentheses are the Bartlett 
standard errors, calculated as (4(k + 1)/3T).5 times standardized long-run 
variance. 

15 See Cochrane (1988) for more details. The researcher proposes the ratio of 
far-future long-run variance of the first difference of the time-series variable of 
interest to its variance (we call the ratio the standardized long-run variance) as a 
measure of the persistence of the series level. This measure is zero for a sta
tionary time series, one for a pure random walk, a number greater than one for 
a series that continues to diverge following a shock, and a number between zero 
and one for a series that returns to a stochastic trend in the future. The author 
estimates the long-run variance by 1/l times the variance of l-differences of the 
series. 
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component, and the deviation following the component should return to 
a stochastic trend in the future.16 

Next, we graph the dynamic properties of the log of COVID-19 new 
infection cases in reality. Fig. 5 shows the scatter plot of the one-week- 
ahead log changes in the number of COVID-19 infection cases and the 
one-week lag of its log levels, which is a sample analogous to Fig. 1.17 

Although there does not seem to be much of a relationship between 
log changes and levels in the new infection cases over the entire sample 
period, we can identify some informative patterns by separating the 
periods. In particular, the scatter plot appears to depict a downward- 
sloping line for each subsample, which implies a cyclicality in the new 
infection cases in our dynamic model in Section 3. This suggests that the 
number of new infections sometimes tended to return to a certain level. 
On the other hand, looking across the subsamples, the downward- 
sloping line appears to have shifted to the right, especially around 
mid-2020, which implies a change in the stochastic trend of the new 
infection cases in the dynamic model. This suggests that the infection 
spread was long-lasting, depending on the time of year. 

5. Macroeconometric analysis 

In this section, we employ macroeconometrics to examine whether 
the data support the prediction in our model analysis of Section 3. 
Specifically, we use the VAR model to specify the joint dynamics of 
COVID-19 infection cases and human mobility in reality.18 Thus, this 
sectionpresents empirical evidence on the (1) the information content of 
human mobility for the COVID-19 infection dynamics, (2) dynamic ef
fect of the changes in the stochastic trend and cycle of the new infection 
cases, (3) role of human mobility in the dynamics of the new infection 
cases, (4) simultaneous equations system comprising the infec
tion–mobility trade-off and mobility demand, and (5) application to the 
infection situation in Japanese prefectures. 

5.1. Information content of human mobility for the dynamics of the 
COVID-19 infection 

First, we examine the information content of human mobility for the 
COVID-19 infection dynamics. We measure the movement of people 
using six Google mobility indices (retail & recreation, grocery & phar
macy, parks, transit stations, workplaces, and residential), and then 
construct the composite index of mobility as the first principal compo
nent (PC) using six standardized (mean-zero and unit variance) mobility 

Fig. 5. Scatter plot of the log changes and levels in 
infection cases. Notes: The sample period spans from 
the week of February 23, 2020, to the week of May 2, 
2021. Blue circles indicate the scatter plot of the one- 
week-ahead log changes in the number of COVID-19 
infection cases and the one-week lag of its log levels, 
from the week of February 23, 2020 to the week of 
June 14, 2020. Orange stars indicate the plot from the 
week of June 21, 2020 to the week of August 9, 2020. 
Green triangles indicate the plot from the week of 
August 16, 2020 to the week of December 27, 2020. 
Red squares indicate the plot from the week of January 
3, 2021 to the week of March 21, 2021. Purple penta
gons indicate the plot from the week of March 28, 2021 
to the week of May 2, 2021.   

16 The standardized long-run variance reaches its peak with lag k = 5 and 
decreases from there. Since the standardized long-run variance reflects the 
cumulative autocorrelation, the autocorrelation begins a course toward nega
tivity from around lag k = 5. This observation corresponds to the period from 
the peak-to-bottom of the number of new infection cases.  
17 We thank an anonymous referee for suggesting the following analysis. 

18 A possible alternative approach is to estimate the state space model derived 
from the dynamic model in Section 3. However, the model is very simple, so we 
have concerns about whether the model is valid with the actual data. The 
plausibility of the dynamic model with respect to actual data is a subject for 
future research. 
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indices, of which the unit is normalized to the unit of retail & recreation 
mobility index.19 Although using more data and complicated models 
could generate a more accurate forecast of new infection cases, we 
expect the composite index of mobility as a representative measure for 
human mobility to contain significant information for the COVID-19 
infection dynamics. 

We consider the time-series model to capture the dynamics of new 
positive infection cases and human mobility. Specifically, we construct 
the following bivariate reduced-form VAR model: 

Xt = a0 + A1Xt− 1 + ⋯ + ApXt− p + et, (10)  

expressed as 

A(L)Xt = a0 + et, (11)  

where Xt = (Δπt , yt)
′

is a two-by-one vector comprising time-series 
variables of the log change in new positive cases Δπt and mobility 
measure yt at week t, a0 is a two-by-one constant vector, A(L) = I − A1L 
− ⋯ − ApLp is a pth order lag polynomial of a two-by-two coefficient 
matrix Aj(j= 1,⋯, p) and et is a two-by-one vector of serially uncorre
lated innovation with a mean of zero and a covariance matrix of Σe. 

The reduced-form weekly VAR model is estimated from the week of 
March 1, 2020, to the week of May 9, 2021. The lag length p in the 
reduced-form VAR estimation is set to three weeks. We confirm that 
taking three-week lags is sufficient to capture the system dynamics.20 

We statistically confirm that human mobility plays an important role 
in constructing a time-series model of the dynamics of the number of 
new infection cases. Table 4 shows the results calculating Akaike and 
Bayesian information criteria (AIC and BIC, respectively) for the VAR 
and other candidate models. As other candidate models, we consider a 
historical average and a univariate AR with three-week lags. 

From the perspective of model selection, there is statistical support 
for adding information on human mobility to the time-series model. We 
find that the VAR model has the smallest information criterion 
computed, whether AIC or BIC, of candidate models, which indicates the 
best model fit, including a penalty for complexity. This result suggests 
that the proposed VAR model with the lags of the composite index of 
mobility simply and thriftily captures the dynamics of the log changes in 
new infection cases. 

Empirical evidence points to the significant information content of 
human mobility for new infection dynamics. The last column in Table 4 
provides the F statistics for the Granger causality test under the null 
hypothesis that the coefficients on the one- to three-week lags of the 
composite index of mobility from the regression of log-changes in 
infection cases in the reduced-form VARs are all equal to zero. The F 
statistics show that the composite index of mobility contains valuable 
information for one-step model forecasts for new infection cases, which 
is statistically significant at the 5% level.21 

5.2. Dynamic effect of the changes in stochastic trend and cycle of 
COVID-19 infection 

In this subsection, we examine the role of “structural” shocks on 
COVID-19 infection cases and human mobility. In particular, we inter
pret fluctuations in COVID-19 infection cases and human mobility, as 
being attributable to changes in the stochastic trend and cycle under
lying the time-series pattern of the infection cases. Accordingly, we 
consider two types of structural shocks: a shock with a permanent effect 
on the log level of new infection cases and a shock that causes temporary 
changes in new infection cases.22 We identify two types of infection 
shocks, which are in reality mixed together. Thus, we examine whether 
it is consistent with the model prediction in section 3 that the former 
shock type increases mobility and the latter decreases it. 

Let ξp,t and ξc,t be a permanent and non-permanent shock, respec
tively. In a structural VAR, the innovations et in (11) are assumed to be 
linear combinations of the structural shocks: 

et = Θξt, (12)  

where ξt = (ξp,t, ξc,t)
′

, the elements of which are assumed to be inde
pendent of each other and have a unit variance, and Θ = (Θp,Θc) rep
resents the impact matrix for the responses of the VAR variables Xt to the 
structural shocks ξt. Eqs. (11) and (12) yield a moving average repre
sentation regarding the structural shocks as follows: 

Xt = b0 + B(L)Θξt, (13)  

Table 4 
Information criteria for constant vs AR vs VAR models and F statistics for human 
mobility in equationfor new infection cases  

Information criteria for the model: H0 : y Fails  

VAR (3) Hist. ave. AR (3) to Cause Δπ  

AIC BIC AIC BIC AIC BIC Granger-F  

-2.68 -2.44 -2.02 -1.98 -2.36 -2.22 4.31 [0.04] 

Notes: Information criteria indicate the log of the mean square forecast error for 
one-step model forecasts plus the penalty term for model complexity.AIC and 
BIC indicate the Akaike information criterion and Bayesian information crite
rion, respectively. For AIC, the penalty is 2/T times the number of parameters in 
the model equation. For BIC, the penalty is log(T)/T times the number of pa
rameters in the model equation. Granger-F indicates the White (1980) 
heteroskedasticity-robust F-statistic for the Granger causality test under the null 
hypothesis that the coefficients on the one- to three-week lags of the composite 
index of mobility from the regression of log-changes in new infection cases in the 
reduced-form VARs are all equal to zero. The numbers in brackets are p-values 
for the Granger causality test. We set the lag length to three weeks in the AR and 
VAR estimation. Estimation samples span from the week of March 1, 2020, to the 
week of May 9, 2021. 

19 The weekly mobility index we use matches the median of each week of the 
daily mobility index, to eliminate the effects of holidays as much as possible. 
See the online appendixfor more details on the Google mobility indices and the 
data construction for the composite index of mobility. 
20 The Bayesian information criterion selects one lag, and the Akaike infor

mation criterion selects two lags. We perform a modified likelihood ratio test, 
proposed by Sims (1980), to check whether taking one or two lags is sufficient. 
The chi-squared statistics indicate that the null hypothesis of one or two lags is 
rejected at the 5% significance level against the alternative of three lags. They 
also indicate that conventional significance levels do not reject the null of three 
lags, as against the alternative of four lags. Moreover, the estimated results are 
insensitive when four and five lags are used. 

21 We confirm that the predictions of the VAR model improve over the AR 
model and the historical average for multistep-ahead model forecasts. In 
particular, although it has good predictive power in the shorter horizon, the 
predictive power of the AR model in the longer horizon is relatively poor. See 
the online appendixin more details for the comparison of in-sample forecasting 
accuracy among a historical average, AR model, and VAR model for the log- 
changes in new infection cases.  
22 We label a shock to the trend component of the new infection cases as a 

permanent shock and a shock to their cyclical component as a non-permanent 
shock. In our bivariate VAR model, the innovations in the reduced-form VARs 
are, by construction, decomposed into two structural shocks independent of 
each other. However, in reality, there can be other shocks than the ones we are 
interested in, such as idiosyncratic shocks that affect human mobility, unrelated 
to the number of new infection cases. In particular, the non-permanent shocks 
would be contaminated by such shocks, under the assumption that only a 
permanent shock affects the log level of new cases in the long run. They cannot 
be identified in our bivariate VAR model. We address this issue by using the 
composite index of mobility as a representative measure of mobility, so that the 
VAR model excludes as many idiosyncratic factors of mobility as possible. 
Nevertheless, it should be noted that our VAR model has such a limitation. 
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where b0 = A(L)− 1a0 and B(L) = A(L)− 1. 
To identify Θ, we impose the long-run restriction on the VAR 

developed by Blanchard and Quah (1989) and King et al. (1991).23 In 
particular, we assume that the non-permanent shocks do not affect the 
log level of new positive infection cases in the long run. This long-run 
restriction implies that the cumulative response of the log changes in 
new positive cases to the non-permanent shock, is constrained to zero: 

[B(1)Θ]12 = 0, (14)  

where [B(1)Θ]12 is the first row and second column of the matrix B(1)Θ. 
The use of the restriction (14) with the long-run covariance matrix 

B(1)ΣeB(1)
′

identifies Θ. To determine the sign of the structural shocks, 
we assume that positive structural shocks have a positive impact on the 
log changes in infection cases, Θ1,p,Θ1,c > 0. 

The estimated impulse response functions, B̂(L)Θ̂, are summarized in 
Fig. 6. As described above, structural shocks are normalized to have unit 
variance and signed to positively affect the log changes in infection cases 
on impact. The solid line with the circles indicates the estimated 
response for the log changes and the composite index of mobility for up 
to 20 weeks. The shaded areas denote one-standard-error bands, 
calculated using 1,000 bootstrap samples. 

Overall, this figure shows that structural shocks have a plausible 
effect, consistent with the dynamic model analysis discussed in Section 
3. We find that the log changes in infection cases have a hump-shaped 
response to a permanent shock, with the second peak effect emerging 

after two weeks. Quantitatively, permanent shocks increase the level of 
new infections over the following eight weeks, by more than five times 
the impact, immediately after the shock. Moreover, human mobility 
rises in response to a permanent shock. However, a non-permanent 
shock, which raises the log changes in infection cases for two weeks 
and declines steadily for about eight weeks, induces a persistent 
decrease in human mobility to its lowest values, approximately four 
weeks after the shock occurs. 

Next, we report the time series of structural shocks identified using 
the VAR model. In particular, it is useful to decompose the unexpected 
changes in COVID-19 infection cases into changes in the stochastic trend 
and in the cycle. Based on our model in section 3, we expect that per
manent shocks would capture exogenous changes in people’s demand 
for human mobility that deviates from systematic responses to infection 
risk, such as changes in behavioral preferences like Corona habituation 
and emergency restrictions on mobility due to certain prevalence mea
sures by the government. On the other hand, we expect that non- 
permanent shocks would capture sudden changes in the number of 
new infection cases, which people perceive as the rise in infection risk, 
which is reflected in changes in the degree of fear and anxiety about the 
COVID-19. The identified structural shocks would have historically 
captured changes in people’s perception of infection risk, over the 
sample period. 

Fig. 7 displays the time series of permanent and non-permanent 
shocks. The bars in the upper and lower panels indicate permanent 
and non-permanent shocks, respectively, as identified using the esti
mated VAR model. The orange shaded areas show the weeks coinciding 
with the period during the declaration of a state of emergency in 

Fig. 6. Estimated responses of the log changes in infection cases and human mobility to permanent and non-permanent shocks. Notes: The solid line with circles in 
the upper and lower panels represent the point estimates of the impulse responses to one standard deviation permanent and non-permanent shock, respectively. The 
shaded areas denote one-standard-error bands, calculated using 1,000 bootstrap samples. Mobility CI denotes the composite index of mobility. We set the lag length 
to three weeks in the reduced-form vector autoregressive estimation. Estimation samples span from the week of March 1, 2020, to the week of May 9, 2021. 

23 Blanchard and Quah (1989) and King et al. (1991) develop the VAR model 
to identify structural shocks, by imposing restrictions on the long-run effect of a 
given shock on a given variable. 
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Fig. 7. Identified permanent and non-permanent shocks. Notes: The bars in the upper and lower panels indicate the permanent and non-permanent shocks, respectively, identified using the estimated vector autor
egressive (VAR) model (11) with the restriction (14). We set the lag length to three weeks in the reduced-form VAR estimation. The orange shaded areas show the weeks coinciding with the period during the state of 
emergency declaration in Japan. The sample period spans from the week of March 1, 2020, to the week of May 9, 2021. 
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Japan.24 

The upper panel of Fig. 7 shows the persistent troughs representing 
permanent shocks for the period during the first state of emergency 
declaration on April 7, 2020, followed by upward swings. Thus, the first 
state of emergency declaration can contribute to inducing a downward 
trend in the number of new infection cases in response to the first wave 
of the COVID-19 pandemic. Moreover, there are upward swings in 
permanent shocks for several weeks from the week of May 24, 2020, to 
the second half of August 2020. Hence, the termination of the state of 
emergency on May 25 may contribute to an upward trend in the number 
of new infection cases. However, there are no large troughs for the 

period during the second and third states of emergency, except for a 
significant drop at the week of the end of 2020. Therefore, the second 
and third states of emergency have not contributed to a decline in the 
number of new infection cases. Regarding non-permanent shocks, as in 
the lower panel of Fig. 7, we see persistent troughs from the first half of 
August 2020 to the second half of October 2020, and from the end of 
November 2020 to the end of December 2020. 

We investigate the extent to which past movements in the new 
positive cases of COVID-19 infection and human mobility resulted from 
permanent or non-permanent shocks. Specifically, we use the historical 
decomposition technique to decompose the historical value of the log 
changes in new positive infection cases and the mobility index into the 
accumulated effects of current and past permanent or non-permanent 
shocks. The upper panel of Fig. 8 shows the time series of the log 
changes in new positive infection cases explained by permanent and 
non-permanent shocks, whereas the lower panel of the figure shows the 
time series of the composite index of mobility explained by the shocks. 
The purple bar shows the decomposed series explained by the perma
nent shocks, ξp,t, and the light blue bar shows the decomposed series 
explained by non-permanent shocks, ξc,t . The solid line indicates the 
estimated stochastic components before decomposition. 

The results reveal that sources of the epidemics of the COVID-19 
infection vary greatly from time to time. From the upper panel of 
Fig. 8, much of the fluctuation in the log changes in infection cases, 
during and several weeks after the first state of emergency declaration, 
occur due to permanent shocks. However, much of this fluctuation also 
stems from non-permanent shocks beginning in the first half of August. 
Even during the second and third states of emergency, a decline in the 

Fig. 8. Historical decomposition of changes in COVID-19 infection cases and human mobility due to permanent and non-permanent shocks. Notes: All the series are 
displayed as deviations from the deterministic component. Mobility CI denotes the composite index of mobility. The purple bar shows the decomposed series 
explained by the permanent shocks. The light blue bar shows the decomposed series explained by the non-permanent shocks. The solid line indicates the estimated 
stochastic component before decomposition. The orange shaded areas show the weeks coinciding with the period during the state of emergency declaration in Japan. 
We set the lag length to three weeks in the reduced-form vector autoregressive estimation. Estimation samples span from the week of March 1, 2020, to the week of 
May 9, 2021. 

24 In Japan, a state of emergency was declared three times during the sampling 
period: from April 7 to May 25, 2020; from January 8, to March 21, 2021; and 
from April 25, 2021 onward. The legal basis for policy responses by governors 
of prefectures subject to the emergency measures is the “Act on Special Mea
sures for Pandemic Influenza and New Infectious Diseases Preparedness and 
Response.” Under the first declaration of emergency, prefectural governors 
were able to request that people refrain from going out of their homes, and to 
request and instruct facility administrators of schools, social welfare facilities, 
and entertainment venues to restrict the use of those facilities in accordance 
with the provisions of Article 45 of the Act. However, the Act does not stipulate 
any penalties for disobeying the instructions under Article 45, and Japan’s 
curfew was extremely loose compared to the lockdowns in China, the United 
States, and many European countries, for example. On February 13, 2021, 
during the second declaration of a state of emergency, the Act was amended to 
allow prefectural governors to order facility managers. Based on the newly 
established Article 79, facility managers who do not comply with the order will 
be subject to a fine of up to 300,000 yen. 
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log changes in infection cases stems from non-permanent shocks. 
Finally, we assess the relative contributions of permanent and 

cyclical components for COVID-19 infection cases and human mobility 
dynamics. Specifically, given the permanent and non-permanent shocks 
in the VAR model, we decompose the forecast error variances of the log 
changes in infection cases and the composite index of mobility into the 
variances of permanent and non-permanent shocks. Next, we estimate 
the percentage contribution of each shock to the forecast errors of the 
log changes in infection cases and the composite index of mobility. 

Table 5 presents the results of the forecast error variance decompo
sition. The relative contribution of non-permanent shocks to the fluc
tuations of the log changes in infection cases at the current week is about 
80%. Although this contribution falls to about 50% at a longer horizon, 
the results suggest an important role of the permanent and non- 

permanent shocks in the dynamics of COVID-19 infection cases. 

5.3. Role of human mobility in the dynamics of COVID-19 infection 

In this subsection, we explore the role of human mobility in the 
dynamics of COVID-19 infection cases. We predict that the systematic 
response of human mobility generates the hump-shaped response of the 
changes in the new infection cases and the cyclicality therein. Thus, to 
investigate the plausibility of our prediction, we conduct counterfactual 
simulations using the VAR model developed by Bernanke et al. (1997) 
and Sims and Zha (2006) to measure the role of the systematic response 
of mobility in response to structural shocks. 

First, we measure the dynamic effect of exogenous changes in human 
mobility. Specifically, we assume that the mobility changes, ξy,t ,t = 1,⋯,

T, produce a unit increase in the composite index of mobility, with no 
impact on the log changes in infection cases at the time a shock occurs, 
due to epidemiological rigidity. Accordingly, we can calculate the im
pulse response functions to an exogenous mobility change as B(L)Θy, 

where Θy = (0,1)
′

. 
Fig. 9 shows the estimated impulse response function to an exoge

nous mobility change, B̂(L)Θy. We find that, in response to an increase in 
human mobility, the log changes in infection cases remain roughly zero 
for two weeks, due to epidemiological rigidity, and then rapidly increase 
for eight weeks. The maximum impact is about four. Thus, a percentage 
increase in the composite index of mobility, which reflects a percentage 
increase in the mobility index with retail & recreation, raises the rate of 
new infection cases by approximately 4%. Hence, exogenous changes in 
people’s behavior induce an increase in the number of new infection 
cases, along with an empirical trade-off relationship, reported in the 
next subsection. 

Table 5 
A fraction of the forecast error variance explained by permanent or non- 
permanent shocks for COVID-19 infection cases and human mobility   

Log changes in infection cases Composite index of mobility 

Horizon Permanent Non-permanent Permanent Non-permanent 

0 18.6 81.4 92.8 7.2 
4 51.4 48.6 71.1 28.9 
8 48.3 51.7 62.1 37.9 
20 48.1 51.9 61.9 38.1 

Notes: The entries show the percentage variance of the forecast error made in the 
column variable, as explained by the permanent or non-permanent shock at a 
given horizon. The results are computed from the vector autoregressive (VAR) 
model (11) with the restriction (14) over the sample period from the week of 
March 1, 2020, to the week of May 9, 2021. We set the lag length to three weeks 
in the reduced-form VAR estimation. 

Fig. 9. Dynamic impacts of the exogenous mobility change on COVID-19 infection cases. Notes: The solid line with circles represents the point estimates of the 
impulse responses to an exogenous mobility change, B(L)Θy, where Θy = (0,1)

′

. Mobility CI denotes the composite index of mobility. The mobility change increases 
the mobility CI by one unit. Estimation samples span from the week of March 1, 2020, to the week of May 9, 2021. The shaded areas denote one-standard-error bands, 
calculated using 1,000 bootstrap samples. We set the lag length to three weeks in the reduced-form vector autoregressive estimation. 
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Next, we investigate the role of human mobility in the dynamic 
response to COVID-19 infection cases given permanent and non- 
permanent shocks. Following Bernanke et al. (1997) and Sims and 
Zha (2006), we use the VAR model to conduct counterfactual simula
tions to assess how the number of new infection cases would have per
formed, without the systematic response of mobility to the structural 
shocks. Specifically, we measure the counterfactual values of the vari
ables in the VAR model by taking the following steps. Given the response 
function to permanent and non-permanent shocks B(L)Θp, B(L)Θc, we 
calculate each sequence of exogenous mobility changes 
{ξ̌j

y,0, ξ̌
j
y,+1,⋯, ξ̌j

y,+H} for j = p and c that would reset y̌0, y̌+1,⋯, y̌+H to 
zero in response to permanent and non-permanent shocks, respectively. 
We then add each sequence before calculating the impulse response 
function of Δπ to permanent and non-permanent shocks. 

Fig. 10 summarizes the simulation results. The red dashed lines 
represent the simulated responses to each structural shock and sequence 
of exogenous mobility changes, to eliminate the normal response of 
mobility to the structural shocks. The difference between the baseline 
result represented by the solid lines and the simulated result indicates a 
magnitude of the dynamic effect of the structural shocks through human 
mobility. 

Our simulation results in the estimated VAR model are consistent 
with our model prediction in Section 3. From the upper-left panel of 
Fig. 10, the absence of mobility responses results in limited rise in the log 
changes in infection cases relative to the benchmark. Moreover, as in the 
lower-left panel of Fig. 10, the absence of mobility responses does not 
result in a continuous decline to converge to a steady-state level. These 
results of the macroeconometric analysis support the argument that 

human mobility creates an accelerated increase in new infection cases 
underlying the changes in its trend. Further, the systematic response of 
mobility demand automatically reduces the number of new infection 
cases underlying changes in its cycle. 

5.4. Simultaneous equations system of infection-mobility trade-off and 
mobility demand 

In this subsection, we examine the feasibility of our argument from 
another perspective. In Sections 5.2 and 5.3, we conducted a macro
econometric analysis on the premise of a stochastic trend and cycle in 
the new infection cases. We examined the dynamics of COVID-19 
infection cases and human mobility to permanent and non-permanent 
shocks in the number of new infection cases, using the VAR model 
with a long-run restriction. While our dynamic model in Section 3 ex
plains that the system comprising the infection–mobility trade-off and 
mobility demand can create the stochastic trend and cycle in the new 
infection cases, it is not obvious whether, in reality, the dynamics 
generated by permanent shocks and by non-permanent shocks employ 
the same system. Thus, we conduct another macroeconometric analysis 
using the VAR–IV model on the explicit premise of simultaneous equa
tions comprising the infection–mobility trade-off and mobility de
mand.25 We then show that we can explain the differences in the impact 
of permanent and non-permanent infection shocks in relation to the role 

Fig. 10. Responses to permanent and non-permanent shocks, no mobility response. Notes: The solid line with circles in the upper and lower panels represent the 
point estimates of the impulse responses to one standard deviation permanent and non-permanent shock, respectively. The shaded areas denote one-standard-error 
bands, calculated using 1,000 bootstrap samples. The red dashed lines represent the simulated responses to each structural shock and sequence of mobility shocks to 
eliminate the normal response of mobility to the structural shocks. Mobility CI denotes the composite index of mobility. We set the lag length to three weeks in the 
reduced-form vector autoregressive estimation. Estimation samples span from the week of March 1, 2020, to the week of May 9, 2021. 

25 See the online appendix for the derivation of the VAR–IV model from a 
simultaneous equationssystem of infection-mobility trade-off and mobility 
demand. 
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of mobility demand, in that the dynamics suggested by the empirical 
results employ the same mechanism as those described in the previous 
subsections.26 

First, we empirically investigate the existence of the infec
tion–mobility trade-off. Specifically, we estimate the following specifi
cation of the infection–mobility trade-off (1): 

Δπt+1 = κyt− 1 + ι + ϵπ,t+1. (15)  

The sample period spans from the week of February 23, 2020, to the 
week of May 2, 2021. Under the premise that the human mobility should 
be predetermined in the supply side of the infection cases due to the 
epidemiological rigidity, we can estimate the regression (15) by OLS. 

Empirical evidence supports the existence of the trade-off between 
COVID-19 infection and human mobility. Table 6 reports estimation 

results for the infection–mobility trade-off (15). The coefficient κ 
describing the response of the one-week-ahead log changes in infection 
cases to the one-week lag of human mobility is positive and statistically 
significant for human mobility. The OLS estimate of κ implies that a 
percentage increase in the composite index of mobility raises the rate of 
new infection cases by about 3% after two weeks. It is quantitatively 
comparable with the finding using other mobility data and statistical 
models by Nagata et al. (2021).27Fig. 11 shows the scatter plot of the 
one-week-ahead log changes in the number of COVID-19 infection cases 
and the one-week lag of the composite index of mobility, which 
graphically confirms the stability of the positive relationship of 
COVID-19 infection cases and human mobility during the sample period. 

Next, we empirically investigate the existence of the mobility de
mand. Specifically, we estimate the following specification of the 
mobility demand (5): 

yt = bΔπt + γ
′

Wt + ξmd,t, (16) 

Table 6 
Estimation results for the COVID-19 infection–mobility trade-off in Japan  

Dependent variable: log changes in infection cases 

κ  3.28  
(0.54) 

ι  0.09  
(0.05) 

Adj-R2  0.43 

Notes: This table shows the ordinary least squares regression results (15) of the log changes in infection cases on the composite index of mobility and constant term. We 
obtain the composite index by scaling and signing the first principal component calculated using six Google mobility indices to the index for retail & recreation. The 
sample period spans from the week of February 23, 2020, to the week of May 2, 2021. The numbers in parentheses are Newey and West (1987) heteroskedasticity and 
autocorrelation robust standard errors for least squares with a four-week lag truncation. 

Fig. 11. Scatter plot of the log changes in infection 
cases and human mobility. Notes: Blue circles indicate 
the scatter plot of the one-week-ahead log changes in 
the number of COVID-19 infection cases and the one- 
week lag of the composite index of mobility. The 
dotted line indicates the fitted value for the regression 
of the one-week-ahead log changes in the number of 
infection cases on the one-week lag of the composite 
index of mobility based on the ordinary least squares 
estimation. Mobility CI denotes the composite index of 
mobility. The sample period spans from the week of 
February 23, 2020, to the week of May 2, 2021.   

26 Note that the VAR model with a long-run restriction and the VAR–IV model 
should be considered to be inherently different from each other, as they have 
different restrictions. Nevertheless, as shown in the following analysis, we find 
that the dynamics estimated by using the VAR-IV model, are almost the same as 
those estimated by using the VAR with a long-run restriction. 

27 Nagata et al. (2021) report an impact of mobility changes in nightlife places 
on new confirmed cases of about 1% to 4%, despite large regional differences in 
sensitivity intensity. 
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where Wt is a vector of control variables comprising the one- to three- 
week lags of yt and Δπt and a constant.28ξmd,t with a mean of zero and 
a variance of σ2

md represents the nonsystematic component of the reac
tion of mobility demand, which we refer to as a “mobility demand 
shock.” In interpreting the mobility demand shocks, ξmd,t may reflect 
transitory changes in the preferences of human behavior and emergent 
changes in human mobility patterns due to some prevalence measures, 
irrespective of whether they are compulsory or not, by the government. 

We estimate the regression (16) by an instrumental variable (IV) 
estimation, because the number of infection cases can be contempora
neously positively correlated with mobility demand shock. For example, 
changing preferences for mobility, such as getting used to the pandemic 
lifestyle and experiencing complacency toward the COVID-19 outbreak, 
can make people more active, despite the worsening infection situation. 
Thus, the OLS estimate of b suffers from an upward endogeneity bias. 
However, estimation using an IV, such as surprise increases in new 
infection cases given the emergence of variant strains (which satisfies 
the relevance of the changes in infection cases and the exogeneity of the 
mobility demand shocks), allows for a consistent estimate of b. 

The instrument in the analysis is the weekly log changes in the search 
volume of the Japanese term (number of infected individuals 
in English).29 We expect this measure to reflect the degree of anxiety 
regarding the surprise changes in the spread of the COVID-19 infection 
among Japanese people, which correlates with the log changes in 
infection cases, but less so with familiarity/ignorance toward such cases. 

To verify the robustness of the proposed instrument, we compute the 
F-statistic under the null hypothesis that the coefficient on the instru
ment from the first-stage regression of the log changes in infection cases 
on the instrument and control variables is equal to zero. We also conduct 
the Hausman (1978) test for endogeneity. 

Table 7 reports the estimation results for the mobility demand (16). 
The coefficient b describing the systematic response of human mobility 
to the log changes in infection cases is negative (positive) in the IV (OLS) 
estimation. This result is consistent with our prediction that the OLS 
estimate of b suffers from an upward endogeneity bias. Moreover, the IV 
estimate of b shows that a percentage increase in new infection cases 
reduces the composite index of mobility by about 0.062, which is 
quantitatively comparable with the finding obtained by using other 
mobility data and the statistical model by Watanabe and Yabu (2021).30 

The instrument is robust, with a heteroskedasticity-robust first-stage 
F-statistic of 21.488.31 Furthermore, the Hausman test result detects 
endogeneity of the log changes in infection cases, although at a 10% 
statistical level, possibly because of efficiency loss from the IV estima
tion. This result statistically supports the implication of our dynamic 
model, where the infection–mobility trade-off and mobility demand 
endogenously and simultaneously determine the number of new infec
tion cases. 

Next, we examine the dynamic effect of changes in anxiety related to 
surprise changes in the spread of COVID-19 infection. Let ξa,t be an 
anxiety shock and Θa, the impact vector for the responses of the VAR 
variables Xt to the anxiety shock. We can express the impulse response 
functions of Xt to an anxiety shock ξa,t as B(L)Θa. 

To identify Θa = (Θ1a,Θ2a)
′

, we adopt the VAR–IV model proposed 
by Stock and Watson (2012, 2018). Assume that a unit increase in ϵa,t 

increases Δπt by one unit Θ1a = 1. We use the IV regression to yield a 
consistent estimate of Θ2a 

e2,t = Θ2ae1,t + ξmd,t, (17)  

using the instrument, where e1,t and e2,t are the reduced-form VAR in
novations of the log changes in infection cases and the composite index 
of mobility, respectively. Given that the regression in Eq. (17) is 

Table 7 
Estimation results for mobility demand in Japan  

Dependent variable: Mobility CI 

OLS estimate of b  0.027  
(0.013) 

IV estimate of b  -0.062  
(0.055) 

Wald F 21.488 
Hausman 2.764  

[0.096] 

Notes: The dependent variable is the composite index of mobility. The independent variable is the log changes in infection cases. The constant and one- to three-week 
lags of log changes in infection cases and the composite index of mobility are included as control variables in the linear regression model. The ordinary least squares 
(OLS) estimate of b indicates the estimate of b by the OLS regression. The instrumental variable (IV) estimate of b indicates the estimate of b by the IV regression. We use 
the weekly log changes in the search volume of (number of infected individuals in English) in Google as an external instrument in the IV regression. The 
numbers in parentheses are White (1980) heteroskedasticity-robust standard errors. Coefficients and standard errors for the control variables are not reported. Wald F 
indicates White (1980) heteroskedasticity-robust F-statistic under the null hypothesis that the coefficient on the instrument from the first-stage regression of the log 
changes in infection cases on the instrument and control variables is equal to zero. Hausman indicates the statistic on the Hausman (1978) test under the null hy
pothesis that the OLS and IV estimators are consistent, but the OLS estimate is efficient. The numbers in brackets are p-values for the Hausman test. The sample period 
spans from the week of March 1, 2020, to the week of May 9, 2021. 

28 In specifying the dynamics of human mobility, one might argue that log 
level should also be added to the VAR model. In particular, Chernozhukov et al. 
(2021) and Hoshi et al. (2021) find evidence that not only the log changes, but 
also the log levels of cases are an important determinant of mobility, using 
panel data for the US and Japan. Nevertheless, even with the addition of log 
level of cases, there should be a less significant difference in the mobility dy
namics that can be captured by our VAR model. In the online appendix, we 
provide empirical results showing that adding log level of cases in our VAR 
model plays a limited role in explaining the dynamics of the composite index of 
mobility. It is important to note that we do not claim that our results are 
inconsistent with the findings of Chernozhukov et al. (2021) and Hoshi et al. 
(2021). We interpret that the detailed information contained in the log level of 
weekly cases in explaining the dynamics of human mobility is already con
tained in the lagged values of log changes of cases and human mobility in our 
VAR model. In addition, the results of our IV estimation of mobility demand, 
taking into account the presence of endogenous bias, are consistent with the 
claims of Chernozhukov et al. (2021) and Hoshi et al. (2021) that the higher 
number of cases reduced people’s mobility.  
29 We retrieved the search volume data from Google Trends (https://trends. 

google.co.jp/trends/?geo=JP) on June 1, 2021. 

30 Given the result of the factor model in the online appendix, a percentage 
increase in new infection cases increases mobility in residence by 0.026(≃ −

0.062× − 0.42). Watanabe and Yabu (2021) report a reduction in people’s 
outings by 0.026% due to a 1% increase in new infection cases.  
31 To ensure that a weak instrument problem is not present, Stock et al. (2002) 

and Stock and Yogo (2005) recommend the rule of thumb that requires the 
F-statistic from the first-stage regression of the two-stage least squares to exceed 
10. 
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Fig. 12. Dynamic impacts of an anxiety shock on COVID-19 infection cases and human mobility. Notes: The solid lines with circles represent the point estimates of 
the impulse responses to an anxiety shock identified using the estimated vector autoregressive (VAR) model (11) with the weekly log changes in the search volume of 

(number of infected individuals in English) in Google as an external instrument. The anxiety shock increases the log changes in infection cases by one unit. 
The shaded areas denote one-standard-error bands, calculated using 1,000 bootstrap samples. Mobility CI denotes the composite index of mobility. We set the lag 
length to three weeks in the reduced-form VAR estimation. Estimation samples span from the week of March 1, 2020, to the week of May 9, 2021. 

Fig. 13. Identified anxiety shocks. Notes: The solid line 
(left-hand scale) indicates the anxiety shocks identified 
using the estimated vector autoregressive (VAR) model 
(11) with the weekly log changes in the search volume 
of (number of infected individuals in English) 
in Google as an external instrument. The dotted line 
(right-hand scale) indicates the non-permanent shocks 
identified using the estimated VAR model (11) with the 
restriction (14). We set the lag length to three weeks in 
the reduced-form VAR estimation. The sample period 
spans from the week of March 1, 2020, to the week of 
May 9, 2021. The orange shaded areas show the weeks 
coinciding with the period during the state of emer
gency declaration in Japan.   
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Fig. 14. Dynamic impacts of a mobility demand shock on COVID-19 infection cases and human mobility. Notes: The solid line with circles represents the point 
estimates of the impulse responses to one unit of a mobility demand shock obtained from the residual of the instrumental variable regression (16) with the weekly log 
changes in the search volume of (number of infected individuals in English) in Google as an instrument. The shaded areas denote one-standard-error bands, 
calculated using 1,000 bootstrap samples. Mobility CI denotes the composite index of mobility. We set the lag length to three weeks in the reduced-form vector 
autoregressive estimation. Estimation samples spans from the week of March 1, 2020, to the week of May 9, 2021. 

Fig. 15. Identified mobility demand shocks. Notes: The 
solid line (left-hand scale) indicates the mobility de
mand shocks obtained from the residual of the instru
mental variable regression (16) with the weekly log 
changes in the search volume of (number of 
infected individuals in English) in Google as an instru
ment. The dotted line (right-hand scale) indicates the 
permanent shocks identified using the estimated vector 
autoregressive (VAR) model (11) with the restriction 
(14). We set the lag length to three weeks in the 
reduced-form VAR estimation. The orange shaded areas 
show the weeks coinciding with the period during the 
state of emergency declaration in Japan. The sample 
period spans from the week of March 1, 2020, to the 
week of May 9, 2021.   
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mathematically equivalent to the regression in Eq. (16), we can set Θ2a 
as the IV estimate of b. 

Fig. 12 summarizes the estimated impulse response functions 
B̂(L)Θ̂a. Accordingly, a unit increase in infection cases due to an anxiety 
shock leads to a persistent decrease in human mobility to its lowest 
values approximately four weeks after the shock occurs. Moreover, after 
the transitory rise in the log changes in infection cases for two weeks, 
they decline steadily for about eight weeks. These responses are quali
tatively similar to those regarding a non-permanent shock reported in 
Fig. 6. 

We can confirm that the anxiety shocks identified by the VAR–IV 
model are the same as the non-permanent shocks identified by the VAR 
model with long-run restriction. Fig. 13 displays the time series of 
anxiety shocks indicated by the solid line (left-hand scale). Relative to 
the time series of non-permanent shocks (the dotted line, right-hand 
scale) identified with the long-run restriction (14), the two series are 
observationally equivalent (the Pearson’s correlation coefficient be
tween them is 0.997), except for the size of variances. This evidence 
implies that the space covered by the anxiety shocks should cover the 
space of the non-permanent shocks identified by imposing the long-run 
restriction. Therefore, it supports our view that a systematic response of 
mobility demand to a surprise change in the new infection cases gen
erates the cyclicality of COVID-19 infection cases. 

Finally, we examine the dynamic impact of a mobility demand shock 
on COVID-19 infection cases and human mobility. The straightforward 

way to analyze it within our framework is to include the shocks obtained 
from the IV regression (16) in the VAR as an exogenous variable: 

A(L)Xt = a0 + Θmdξmd,t + e⊥t , (18)  

where Θmd is a two-by-one vector capturing the contemporaneous 
response of the elements of Xt to a mobility demand shock. The inno
vation term e⊥t is, by construction, orthogonal to the mobility shock. We 
can obtain the consistent estimates of Θmd by regressing the VAR in
novations et on the mobility demand shocks ξmd,t. We can express im
pulse response functions of Xt to a mobility demand shock ξmb,t as 
B(L)Θmd. 

In addition to the anxiety and non-permanent shocks, the mobility 
demand shocks are the same as the permanent shocks identified in the 
VAR model with the long-run restriction. From Fig. 14, the estimated 
responses to a mobility demand shock are qualitatively similar to those 
to a permanent shock. In response to the rise in human mobility due to a 
mobility demand shock, the log changes in infection cases have a hump- 
shaped response, with the second peak effect occurring after two weeks. 
Moreover, from Fig. 15, the mobility demand shocks track the move
ment of the permanent shocks precisely, which changes the stochastic 
trend in the new infection cases. Thus, the changes in mobility demand, 
such as the changes in human behavioral preferences and emergent 
changes in human mobility patterns, can accelerate changes in the sto
chastic trend in new infection cases. 

The results can reconcile highly controversial evidence on the 

Fig. 16. Estimated responses of the log changes in infection cases and human mobility to permanent and non-permanent shocks in Tokyo and Osaka. Notes: The solid 
lines in the upper and lower panels represent the point estimates of the impulse responses to one standard deviation permanent and non-permanent shock, 
respectively, by prefecture. Mobility CI denotes the composite index of mobility. We set the lag length to three weeks in the reduced-form vector autoregressive 
estimation. Estimation samples span from the week of March 1, 2020, to the week of May 9, 2021. Different colors represent different prefectures, where the navy 
blue is for Tokyo and the dark orange is for Osaka. 
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association between COVID-19 infection cases and human mobility. 
Studies such as Kraemer et al. (2020) and Nagata et al. (2021) report 
empirical evidence on the positive causal relationship between human 
mobility and infection cases. Others, such as Goolsbee and Syverson 
(2021) and Watanabe and Yabu (2021), report empirical evidence on 
the negative causal relationship between human mobility and infection 
cases. Our proposed simultaneous equations system, which takes into 
account the two causal relationships between human mobility and new 
infections, can interpret these conflicting empirical results without 
contradiction, and is useful for understanding infection dynamics. 
Therefore, analyses using macroeconometrics provide a more realistic 
picture of the COVID-19 infection cases and human mobility to capture 
the role of the stochastic trend and cycle in their dynamics. 

5.5. Application to the infection situation in Japanese prefectures 

In this subsection, we present the empirical results of applying our 
empirical framework to time-series data of new infection cases in Jap
anese prefectures.32 In particular, we investigate whether there is a 
dynamic causal relationship as obtained in section 5.2 for these regional 
time-series data. We further illustrate how regional differences in the 

evolution of an infection situation can be interpreted in our framework. 
We limit our analysis to the infection situation in the two prefectures 

of Tokyo and Osaka, where the number of the new infection cases is 
relatively high, compared to elsewhere in Japan.33 Both of these pre
fectures experienced a sustained decrease in the infection cases during 
the state of emergency declaration, and a persistent increase in cases 
after the state of emergency declaration was lifted. Nevertheless, there 
are regional differences in the infection spread. In particular, when the 
first emergency declaration was lifted, the infection situation in Osaka 
improved steadily, and the emergency declaration was lifted earlier on 
May 21, but the infection situation in Tokyo was not reassuring.34 Also, 
after the second state of emergency declaration was lifted, the infection 

Fig. 17. Identified permanent and non-permanent shocks in Tokyo and Osaka. Notes: The solid lines in the upper and lower panels indicate the permanent and non- 
permanent shocks, respectively, identified using the estimated vector autoregressive (VAR) model (11) with the restriction (14) by prefecture. We set the lag length to 
three weeks in the reduced-form VAR estimation. The orange shaded areas show the weeks coinciding with the period during the state of emergency declaration in 
Japan. The sample period spans from the week of March 1, 2020, to the week of May 9, 2021. Different colors represent different prefectures, where the navy blue is 
for Tokyo and the dark orange is for Osaka. 

32 We thank an anonymous referee for suggesting the following analysis. 

33 In the online appendix, we take a look at the evolution of an infection sit
uation in Tokyo and Osaka to illustrate a common trend and regional differ
ences in infection spread.  
34 On June 2, 2020, immediately after the first state of emergency declaration 

was lifted, the Tokyo Metropolitan Government issued “Tokyo Alert,” its own 
standard for providing warning signals regarding the infection spread situation 
of COVID-19, for the first time, to warn Tokyo residents about signs of a 
resurgence of the infection. 
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situation in Osaka deteriorated rapidly.35 

We apply our empirical framework to the infection situation in each 
prefecture. Specifically, we estimate the VAR model with a long-run 
restriction separately, using the time-series data of the log changes in 
infection cases and human mobility in each prefecture. As well as car
rying out an analysis with the aggregated data, we construct the com
posite index of mobility for each prefecture, using six of Google’s 
mobility indices and employ it as an endogenous variable in the VAR 
model.36 The one- to three-week lags of the endogenous variables are 
included in the VAR model for each prefecture. 

Fig. 16 shows the estimated impulse response of the log changes in 
infection cases and the composite index of mobility to permanent and 
non-permanent shocks in Tokyo and Osaka. We find that, although there 
are quantitative regional differences, the estimated dynamic causal 
relationship between the infection cases and human mobility is quali
tatively similar to the results for Japan as a whole in section 5.2; a 
permanent infection shock causes a hump-shaped increase in infection 
cases with increased human mobility and a non-permanent shock causes 
a temporary increase in cases with decreased human mobility. 

Fig. 17 displays the time series of identified permanent and non- 
permanent shocks in Tokyo and Osaka. As seen in the top panel of the 
figure, we find that the permanent shocks tend to occur simultaneously 
across the two prefectures.37 On the other hand, as seen in the bottom 
panel of the figure, we find that the time series of non-permanent shocks 
vary considerably between Tokyo and Osaka.38 In particular, there is a 
large discrepancy between the non-permanent shocks in Tokyo and 
Osaka at the end of the first and second states of emergency declarations. 
This implies that the source of the differences in the evolution of an 
infection situation between the two prefectures, can be interpreted as 
occurring primarily due to non-permanent shocks in our framework. 

Fig. 18 gives the historical decomposition of the log changes in 
infection cases in Tokyo and Osaka. We find that the decomposed series 
explained by permanent shocks is similar to the ones in the upper panel 
of Fig. 8. In particular, there is a common tendency in the two pre
fectures for the decomposed series to drop significantly during the first 
state of emergency declaration, and to rise significantly in the weeks 
following the lifting of the declaration. Nevertheless, we find that the 
fluctuation in the decomposed series explained by non-permanent 
shocks is considerably larger than that explained by permanent 
shocks. This implies that when analyzing the relationship between 
infection spread and human mobility using prefecture-specific data, 
variations in the growth rate of new cases by prefecture is likely to be 

Fig. 18. Historical decomposition of log changes in COVID-19 infection cases due to the permanent and non-permanent shocks in Tokyo and Osaka. Notes: All the 
series are displayed as deviations from the deterministic component. The purple bar shows the decomposed series explained by the permanent shocks. The light blue 
bar shows the decomposed series explained by the non-permanent shocks. The solid line indicates the estimated stochastic component before decomposition. The 
orange shaded areas show the weeks coinciding with the period during the state of emergency declaration in Japan. We set the lag length to three weeks in the 
reduced-form vector autoregressive estimation in each prefecture. Estimation samples span from the week of March 1, 2020, to the week of May 9, 2021. 

35 In Osaka, the second state of emergency declaration was lifted ahead of 
schedule, on February 28, 2021. However, in response to the reemergence of 
the infection, on April 7, the Osaka Prefectural Government called for the 
prefectural residents to be vigilant, stating that the infection situation was at 
the most serious level based on the “Osaka Model,” its own standard for a 
warning signal regarding the infection spread situation of COVID-19.  
36 See the online appendix for the time-series data on the composite index of 

mobility in Tokyo and Osaka that we use in the analysis. 

37 We confirm that there is a statistically positive correlation of permanent 
shocks between Tokyo and Osaka (correlation coefficient is 0.81).  
38 The correlation of the non-permanent shocks between Tokyo and Osaka is 

small, with a correlation coefficient of 0.11. 
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dominated by the influence of non-permanent shocks. 
The application in this subsection suggests the importance of moni

toring the changes in people’s perception of infection risk, in controlling 
infection spread throughout Japan. The infection spread can vary from 
prefecture to prefecture, but much of it is temporary, thanks to people in 
each prefecture curbing their mobility. On the other hand, permanent 
shocks, possibly due to exogenous changes in mobility demand, may 
create a common tendency of infection spread across prefectures. Poli
cymakers may need to intervene to limit people’s behavior if the 
infection spread is expected to be long-lasting and widespread, as peo
ple’s perception of the infection risk changes. 

6. Summary and discussion 

Human mobility is pivotal in considering the dynamics of the num
ber of COVID-19 infection cases. Arguably, there is a trade-off between 
the increase in new infection cases and human mobility. The number of 
new infection cases increases, because the probability of susceptible 
people being infected by interacting with other infected people becomes 
higher as more people move around. However, there is a systematic 
response of mobility demand regarding the new infection cases; that is, 
when the number of new infection cases increases, people restrain their 
mobility. Hence, there is a stochastic trend and cycle in the infection 
dynamics. As described in our analysis using the dynamic model of 
COVID-19 infection and human mobility, human mobility can create an 
acceleration of the spread of COVID-19 infection and its cyclicality 
under the simultaneous relationship. 

This study has provided empirical evidence in support of the argu
ment. Using time-series data from February 2020 to May 2021 in Japan, 
we demonstrated the stochastic trend and cycle in the new infection 
cases. Using macroeconometric analysis applied to the time series of log 
changes in the new infection cases and human mobility, we demon
strated the feasibility of our predictions. Moreover, sources of the 
COVID-19 infection spread vary significantly from time to time, and the 
changes in the trend and cycle of the new infection cases explain 
approximately half of its variation, respectively, from March 2020 to 
May 2021 in Japan. 

The findings of this study offer suggestions on some of the current 
concerns regarding COVID-19. For instance, there is concern that the 
infection rate may vary from time to time, because the severe acute 
respiratory syndrome coronavirus 2, an RNA virus, is prone to mutation. 
The emergence of a variant strain would cause surprise changes in the 
new infection cases, reflecting a transitory change in the parameter κ in 
our model. Nevertheless, we predict that if we respond appropriately to 
the situation and change our behavior, we can keep the number of new 
infection cases at a certain level, under the premise of system stability. 

However, the primary concern of this study is that, as the COVID-19 
infection spread continues, people may ignore the situation, and partly 
or fully continue (or resume) economic activities because they have 
become accustomed to living amid the reality of the pandemic and a life 
of restrictions. Through this study, we hope to curb the speed of infec
tion spread by helping people realize that how they regulate their 
behavioral preferences and freedom of mobility can reduce the proba
bility of infections. Such decisions are reflected in practical measures 
such as wearing masks, avoiding close encounters, social distancing, and 
refraining from going out if one has COVID-19-related symptoms, to stall 
the spread as much as possible. Admittedly, despite the fact that the 
declaration of a state of emergency due to the spread of the COVID-19 
infection and the request to refrain from needlessly going out have 
greatly restricted economic activities, Japan has not experienced a 
major medical collapse, and the probability of people in the country 
contracting the virus has been kept extremely low. However, people are 
likely to be wearied by the repeated declarations of a state of emergency 
and calls for self-restraint. If this scenario becomes unbearable and 
people begin ignoring the situation, the number of infection cases could 
increase exponentially. 

Hence, what actions can be taken to prevent an escalation of the 
infection rate? Assuming that economic activities continue, it would be 
challenging to completely control the spread of infections, and a certain 
level of new infection cases will be inevitable. People must act to avoid 
increasing the number of new infection cases, due to the changes in their 
preferences regarding systematic behavior. Even without relying on 
strict countermeasures against COVID-19 infections, avoiding a sus
tained increase in the number of new infection cases via people’s 
behavioral responses, is possible by employing the practical measures 
highlighted above. 

Although this study assumes a stable system, structural changes are 
expected.39 In particular, we expect the widespread administration of 
vaccines to cause a structural change in the parameter κ, in that it be
comes flat in our model, thereby inducing a weak trade-off between the 
new infection cases and human mobility. Nevertheless, if the widespread 
availability of vaccines changes people’s preferences in terms of 
ignoring the situation, which pushes the parameter in the mobility de
mand, b, toward zero in our dynamic model, then the spread of COVID- 
19 infections may emulate the seasonal flu epidemics in winter. As of 
June 2021, when this paper was being prepared, this speculation is 
consistent with events in countries where vaccines are widely available. 

There are many possibilities for an extension of the analysis in this 
study, leaving room for future research to proceed in several directions. 
First, investigating the system stability in the dynamics of the number of 
new infection cases is an important theoretical and empirical challenge. 
Although our analysis is premised on cyclicality and the stochastic 
trends in new infection cases, the model predictions and empirical re
sults do not necessarily hold for every economy. The dynamics in our 
model strongly depend on the set of its parameters. In particular, as the 
parameter representing the systematic response of mobility demand to 
the new infection cases, b, tends toward zero, the model predicts less 
cyclicality in such cases. Thus, the irresponsibility of human mobility in 
the economy is associated with the probability of an infection explosion, 
which can vary significantly by country and region, depending on 
behavioral factors such as testing and quarantine procedures for positive 
cases, lifestyle, and culture. Hence, future research can theoretically 
examine conditions that are satisfied with cyclicality in the new infec
tion cases and quantitatively assess its degree, using time-series data in 
other countries and regions. 

Second, although this study considers the formation of the reference 
level of new infection cases briefly in the models, future studies can 
provide empirical evidence on the formation of people’s opinions and 
beliefs regarding the reality of epidemics. The study’s findings present 
important policy implications. An important task for policymakers in 
predicting and controlling infections is to monitor changes in people’s 
perception of infection risk. If people continue to ignore the risk of 
infection and engage in economic activities, policymakers should take 
interventions that will change the way people view the risk of infections. 
To do so, we need to consult quantitative assessments on how people 
form their opinions and beliefs regarding the reality of epidemics. It is 
also important to extend the model to include the policy sector, in order 
to analyze the role of policy interventions, such as a systematic control 

39 It would be interesting to analyze the fourth wave and the subsequent 
decline of COVID-19 in Japan. At this time, vaccination in Japan progressed 
rapidly. We speculate that the widespread use of vaccines may have played a 
major role in the decrease in the number of cases after the fourth wave. 
However, because there is little data after the vaccine has been distributed 
throughout Japan, it is difficult to verify the structural changes in the VAR 
model. Therefore, we leave the analysis of possible structural changes in the 
system as a future issue. 
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of human mobility in response to increases or decreases in the number of 
new infections.40 Moreover, significant heterogeneity in the level of 
concern people have about the situation is expected. It is conceivable 
that those who are at high risk of serious illness may respond to gov
ernment measures and requests to refrain from economic activities, 
while those at low risk may ignore them. 

Finally, the study findings can encourage important developments in 
building epidemiological models incorporating human behavior. From 
the theoretical analysis in Gans (2020), in environments where the 
systematic responses of mobility demand to changes in the number of 
new infection cases fully work, an equilibrium level would be reached 
long before herd immunity is achieved. However, even in the SIR–Macro 
model, as in Eichenbaum et al. (2021), where the reproduction rate 
systematically changes depending on economic activities, this mecha
nism seems to be unattractive. Better predictions and simulations of new 
infection cases may be provided by modifying the SIR models, implying 
an economically convenient reduction in the reproduction rate. 

Appendix A. Data sources and weekly data construction 

Data on the new confirmed cases of COVID-19 and the Oxford 
Stringency Index are obtained from Our World in Data.41 The Oxford 
Stringency Index is calculated by the Oxford Coronavirus Government 
Response Tracker project.42 This index averages nine indices: school 
closures, workplace closures, cancellation of public events, restrictions 
on public gatherings, closures of public transport, stay-at-home re
quirements, public information campaigns, restrictions on internal 
movements, and international travel controls. Each index takes a value 
from 0 to 100. The larger the index, the stricter the government’s 
response. 

Data on the new confirmed cases in Tokyo and Osaka are obtained 
from the Japan Broadcasting Corporation (NHK) special website for new 
coronaviruses43 because the data on COVID-19 Data Repository by CSSE 
at Johns Hopkins University, which is the source for Our World in Data, 
have missing values for the sample period from February 16, 2020, to 
May 9, 2021. We confirm that both data are consistent except for the 
missing values. 

The mobility indices are from the COVID-19 Community Mobility 
Reports by Google.44 Each mobility variable is calculated as the rate of 
deviation from the reference value, which is set for each day of the week. 
The reference value for each day of the week, is the median value for 
each day of the week for five weeks, from January 3 to February 6, 2020. 

The frequency of all data is daily. We convert to weekly data from 
Sunday to Saturday, in order to eliminate the transitory factor. The 
number of new weekly infection cases and the weekly mobility indices, 
are calculated as the cumulative number of new daily infection cases and 
the median of the daily mobility indices each week, respectively. 

Supplementary material 

Supplementary material associated with this article can be found, in 
the online version, at 10.1016/j.jjie.2022.101195 
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